Equivalence of Left Linear, Right Linear and Regular Languages

Dr. Neminath Hubballi

Indian Institute of Technology Indore

January 29, 2018

Overview

Reverse of a Regular Language

2 Left Linear Grammar to Right Linear Grammar

Theorem

If L is a regular language then L^R is also regular

Proof:

Theorem

If L is a regular language then L^R is also regular

Proof: Let *L* be a regular language

Theorem

If L is a regular language then L^R is also regular

Proof: Let L be a regular language

 $\Rightarrow \exists$ an nfa such that L = L(M)

Theorem

If L is a regular language then L^R is also regular

Proof: Let *L* be a regular language

 $\Rightarrow \exists$ an nfa such that L = L(M)

 $M=(Q, \Sigma, \delta, q_0, F)$ (M has a single final state)

Theorem

If L is a regular language then L^R is also regular

Proof: Let *L* be a regular language

 $\Rightarrow \exists$ an nfa such that L = L(M)

 $M=(Q, \Sigma, \delta, q_0, F)$ (M has a single final state)

Construct a new machie $M' = (Q', \Sigma', \delta', q_f, F')$ (with $q_0 \in Q$)

Theorem

If L is a regular language then L^R is also regular

Proof: Let L be a regular language $\Rightarrow \exists$ an nfa such that L = L(M) $M = (Q, \Sigma, \delta, q_0, F)$ (M has a single final state) Construct a new machie $M' = (Q', \Sigma', \delta', q_f, F')$ (with $q_0 \in Q$) Q' = Q

Theorem

If L is a regular language then L^R is also regular

Proof: Let L be a regular language $\Rightarrow \exists$ an nfa such that L = L(M) $M = (Q, \Sigma, \delta, q_0, F)$ (M has a single final state) Construct a new machie $M' = (Q', \Sigma', \delta', q_f, F')$ (with $q_0 \in Q$) Q' = Q $\Sigma' = \Sigma$

Theorem

If L is a regular language then L^R is also regular

```
Proof: Let L be a regular language \Rightarrow \exists an nfa such that L = L(M) M = (Q, \Sigma, \delta, q_0, F) (M has a single final state) Construct a new machie M' = (Q', \Sigma', \delta', q_f, F') (with q_0 \in Q) Q' = Q \Sigma' = \Sigma F' = \{q_0\}
```

Theorem

If L is a regular language then L^R is also regular

```
Proof: Let L be a regular language
\Rightarrow \exists an nfa such that L = L(M)
M=(Q, \Sigma, \delta, q_0, F) (M has a single final state)
Construct a new machie M' = (Q', \Sigma', \delta', q_f, F') (with q_0 \in Q)
Q' = Q
\Sigma' = \Sigma
F' = \{q_0\}
Add transitions as follows
```

Theorem

If L is a regular language then L^R is also regular

```
Proof: Let L be a regular language
\Rightarrow \exists an nfa such that L = L(M)
M=(Q, \Sigma, \delta, q_0, F) (M has a single final state)
Construct a new machie M' = (Q', \Sigma', \delta', q_f, F') (with q_0 \in Q)
Q' = Q
\Sigma' = \Sigma
F' = \{q_0\}
```

Add transitions as follows

For every transition $\delta(q_i, t) = q_i$ in M (where $t \in \Sigma \bigcup \lambda$)

Theorem

If L is a regular language then L^R is also regular

```
Proof: Let L be a regular language
\Rightarrow \exists an nfa such that L = L(M)
M=(Q, \Sigma, \delta, q_0, F) (M has a single final state)
Construct a new machie M' = (Q', \Sigma', \delta', q_f, F') (with q_0 \in Q)
Q' = Q
\Sigma' = \Sigma
F' = \{q_0\}
```

Add transitions as follows

For every transition $\delta(q_i, t) = q_i$ in M (where $t \in \Sigma \bigcup \lambda$)

Add a transition $\delta'(q_i, t) = q_i$

Correctness Claim: Let $w = t_1 t_2, \dots, t_n \in L(M)$

Correctness Claim: Let
$$w = t_1 t_2, \dots, t_n \in L(M)$$
 $\Rightarrow \delta^*(q_0, w) = q_f$

Correctness Claim: Let
$$w = t_1 t_2, \dots, t_n \in L(M)$$
 $\Rightarrow \delta^*(q_0, w) = q_f$ $\Rightarrow \delta^*(q_0, t_1 t_2, \dots, t_n) = q_f$

Correctness Claim: Let $w = t_1 t_2, \dots, t_n \in L(M)$ $\Rightarrow \delta^*(q_0, w) = q_f$ $\Rightarrow \delta^*(q_0, t_1 t_2, \dots, t_n) = q_f$ $\Rightarrow \delta^*(\delta(q_0, t_1), t_2, \dots, t_n) = q_f$

Correctness Claim: Let $w = t_1 t_2, \dots, t_n \in L(M)$ $\Rightarrow \delta^*(q_0, w) = q_f$ $\Rightarrow \delta^*(q_0, t_1 t_2, \dots, t_n) = q_f$ $\Rightarrow \delta^*(\delta(q_0, t_1), t_2, \dots, t_n) = q_f$ $\Rightarrow \delta^*(q_a, t_2, \dots, t_n) = q_f$

Correctness Claim: Let $w = t_1 t_2, \dots, t_n \in L(M)$ $\Rightarrow \delta^*(q_0, w) = q_f$ $\Rightarrow \delta^*(q_0, t_1 t_2, \dots, t_n) = q_f$ $\Rightarrow \delta^*(\delta(q_0, t_1), t_2, \dots, t_n) = q_f$ $\Rightarrow \delta^*(q_a, t_2, \dots, t_n) = q_f$ $\Rightarrow \delta^*(\delta(q_a, t_2), t_3, \dots, t_n) = q_f$

Correctness Claim: Let $w = t_1 t_2, \dots, t_n \in L(M)$ $\Rightarrow \delta^*(q_0, w) = q_f$ $\Rightarrow \delta^*(q_0, t_1 t_2, \dots, t_n) = q_f$ $\Rightarrow \delta^*(\delta(q_0, t_1), t_2, \dots, t_n) = q_f$ $\Rightarrow \delta^*(q_a, t_2, \dots, t_n) = q_f$ $\Rightarrow \delta^*(\delta(q_a, t_2), t_3, \dots, t_n) = q_f$ $\dots \Rightarrow \delta(q_x, t_n) = q_f$

Correctness Claim: Let
$$w = t_1 t_2, \dots, t_n \in L(M)$$

 $\Rightarrow \delta^*(q_0, w) = q_f$
 $\Rightarrow \delta^*(q_0, t_1 t_2, \dots, t_n) = q_f$
 $\Rightarrow \delta^*(\delta(q_0, t_1), t_2, \dots, t_n) = q_f$
 $\Rightarrow \delta^*(q_a, t_2, \dots, t_n) = q_f$
 $\Rightarrow \delta^*(\delta(q_a, t_2), t_3, \dots, t_n) = q_f$
 $\dots \Rightarrow \delta(q_x, t_n) = q_f$
 $w^R = t_n, t_{n-1}, \dots, t_1$

Correctness Claim: Let
$$w=t_1t_2,\cdots,t_n\in L(M)$$
 $\Rightarrow \delta^*(q_0,w)=q_f$ $\Rightarrow \delta^*(q_0,t_1t_2,\cdots,t_n)=q_f$ $\Rightarrow \delta^*(\delta(q_0,t_1),t_2,\cdots,t_n)=q_f$ $\Rightarrow \delta^*(q_a,t_2,\cdots,t_n)=q_f$ $\Rightarrow \delta^*(\delta(q_a,t_2),t_3,\cdots,t_n)=q_f$ $\therefore ... \Rightarrow \delta(q_x,t_n)=q_f$ $w^R=t_n,t_{n-1},\cdots,t_1$ To show $\Rightarrow \delta'^*(q_f,w^R)=q_0$

Correctness Claim: Let
$$w = t_1 t_2, \dots, t_n \in L(M)$$

 $\Rightarrow \delta^*(q_0, w) = q_f$
 $\Rightarrow \delta^*(q_0, t_1 t_2, \dots, t_n) = q_f$
 $\Rightarrow \delta^*(\delta(q_0, t_1), t_2, \dots, t_n) = q_f$
 $\Rightarrow \delta^*(q_a, t_2, \dots, t_n) = q_f$
 $\Rightarrow \delta^*(\delta(q_a, t_2), t_3, \dots, t_n) = q_f$
 $\dots \Rightarrow \delta(q_x, t_n) = q_f$
 $w^R = t_n, t_{n-1}, \dots, t_1$
To show
 $\Rightarrow \delta'^*(q_f, w^R) = q_0$
 $\Rightarrow \delta'^*(q_f, t_n t_{n-1}, \dots, t_1) = q_0$

Correctness Claim: Let
$$w = t_1 t_2, \dots, t_n \in L(M)$$

 $\Rightarrow \delta^*(q_0, w) = q_f$
 $\Rightarrow \delta^*(q_0, t_1 t_2, \dots, t_n) = q_f$
 $\Rightarrow \delta^*(\delta(q_0, t_1), t_2, \dots, t_n) = q_f$
 $\Rightarrow \delta^*(q_a, t_2, \dots, t_n) = q_f$
 $\Rightarrow \delta^*(\delta(q_a, t_2), t_3, \dots, t_n) = q_f$
 $\dots \Rightarrow \delta(q_x, t_n) = q_f$
 $w^R = t_n, t_{n-1}, \dots, t_1$
To show
 $\Rightarrow \delta'^*(q_f, w^R) = q_0$
 $\Rightarrow \delta'^*(q_f, t_n t_{n-1}, \dots, t_1) = q_0$
 $\Rightarrow \delta'^*(\delta'(q_f, t_n), t_{n-1}, \dots, t_1)$

Correctness Claim: Let
$$w = t_1 t_2, \dots, t_n \in L(M)$$

 $\Rightarrow \delta^*(q_0, w) = q_f$
 $\Rightarrow \delta^*(q_0, t_1 t_2, \dots, t_n) = q_f$
 $\Rightarrow \delta^*(\delta(q_0, t_1), t_2, \dots, t_n) = q_f$
 $\Rightarrow \delta^*(q_a, t_2, \dots, t_n) = q_f$
 $\Rightarrow \delta^*(\delta(q_a, t_2), t_3, \dots, t_n) = q_f$
 $\dots \Rightarrow \delta(q_x, t_n) = q_f$
 $w^R = t_n, t_{n-1}, \dots, t_1$
To show
 $\Rightarrow \delta'^*(q_f, w^R) = q_0$
 $\Rightarrow \delta'^*(q_f, t_n t_{n-1}, \dots, t_1) = q_0$
 $\Rightarrow \delta'^*(\delta'(q_f, t_n), t_{n-1}, \dots, t_1)$
 $\Rightarrow \delta'^*(q_x, t_{n-1}, \dots, t_1) (: \delta(q_x, t_n) = q_f \in M \Rightarrow \delta'(q_f, t_n) = q_x \in M')$

Correctness Claim: Let
$$w = t_1 t_2, \dots, t_n \in L(M)$$

 $\Rightarrow \delta^*(q_0, w) = q_f$
 $\Rightarrow \delta^*(q_0, t_1 t_2, \dots, t_n) = q_f$
 $\Rightarrow \delta^*(\delta(q_0, t_1), t_2, \dots, t_n) = q_f$
 $\Rightarrow \delta^*(q_a, t_2, \dots, t_n) = q_f$
 $\Rightarrow \delta^*(\delta(q_a, t_2), t_3, \dots, t_n) = q_f$
 $\dots \Rightarrow \delta(q_x, t_n) = q_f$
 $w^R = t_n, t_{n-1}, \dots, t_1$
To show
 $\Rightarrow \delta'^*(q_f, w^R) = q_0$
 $\Rightarrow \delta'^*(q_f, t_n t_{n-1}, \dots, t_1) = q_0$
 $\Rightarrow \delta'^*(\delta'(q_f, t_n), t_{n-1}, \dots, t_1)$
 $\Rightarrow \delta'^*(q_x, t_{n-1}, \dots, t_1) (: \delta(q_x, t_n) = q_f \in M \Rightarrow \delta'(q_f, t_n) = q_x \in M')$
 $\dots \Rightarrow \delta(q_x, t_1) = q_0 \in F'$

Correctness Claim: Let
$$w = t_1 t_2, \dots, t_n \in L(M)$$

 $\Rightarrow \delta^*(q_0, w) = q_f$
 $\Rightarrow \delta^*(q_0, t_1 t_2, \dots, t_n) = q_f$
 $\Rightarrow \delta^*(\delta(q_0, t_1), t_2, \dots, t_n) = q_f$
 $\Rightarrow \delta^*(q_a, t_2, \dots, t_n) = q_f$
 $\Rightarrow \delta^*(\delta(q_a, t_2), t_3, \dots, t_n) = q_f$
 $\dots \Rightarrow \delta(q_x, t_n) = q_f$
 $w^R = t_n, t_{n-1}, \dots, t_1$
To show
 $\Rightarrow \delta'^*(q_f, w^R) = q_0$
 $\Rightarrow \delta'^*(q_f, t_n t_{n-1}, \dots, t_1) = q_0$
 $\Rightarrow \delta'^*(\delta'(q_f, t_n), t_{n-1}, \dots, t_1)$
 $\Rightarrow \delta'^*(q_x, t_{n-1}, \dots, t_1) (: \delta(q_x, t_n) = q_f \in M \Rightarrow \delta'(q_f, t_n) = q_x \in M')$
 $\dots \Rightarrow \delta(q_x, t_1) = q_0 \in F'$

Theorem

If L is a regular language, then there exist an equivalent Left Linear Grammar G' such that L = L(G')

Theorem

If L is a regular language, then there exist an equivalent Left Linear Grammar G' such that L = L(G')

Proof: Let L be a regular language

Theorem

If L is a regular language, then there exist an equivalent Left Linear Grammar G' such that L=L(G')

Proof: Let L be a regular language

 $\Rightarrow \exists$ and nfa M=(Q, Σ , δ , q_0 , F) such that L=L(M)

Theorem

If L is a regular language, then there exist an equivalent Left Linear Grammar G' such that L=L(G')

Proof: Let L be a regular language $\Rightarrow \exists$ and nfa $M=(Q, \Sigma, \delta, q_0, F)$ such that L=L(M) Construct a new machine M' for L^R

Theorem

If L is a regular language, then there exist an equivalent Left Linear Grammar G' such that L=L(G')

Proof: Let L be a regular language $\Rightarrow \exists$ and nfa $M=(Q, \Sigma, \delta, q_0, F)$ such that L=L(M) Construct a new machine M' for L^R Generate a Right Linear Grammar G for L^R

Theorem

If L is a regular language, then there exist an equivalent Left Linear Grammar G' such that L = L(G')

Proof: Let L be a regular language

 $\Rightarrow \exists$ and nfa M= $(Q, \Sigma, \delta, q_0, F)$ such that L=L(M)

Construct a new machine M' for L^R

Generate a Right Linear Grammar G for L^R

Generate a Left Linear Grammar G' by rewriting production rules

Theorem

If L is a regular language, then there exist an equivalent Left Linear Grammar G' such that L=L(G')

Proof: Let L be a regular language $\Rightarrow \exists$ and nfa $M=(Q, \Sigma, \delta, q_0, F)$ such that L=L(M) Construct a new machine M' for L^R Generate a Right Linear Grammar G for L^R Generate a Left Linear Grammar G' by rewriting production rules

• For every production X - > xY (where $x \in T^*$)

Theorem

If L is a regular language, then there exist an equivalent Left Linear Grammar G' such that L=L(G')

Proof: Let L be a regular language $\Rightarrow \exists$ and nfa $M=(Q, \Sigma, \delta, q_0, F)$ such that L=L(M) Construct a new machine M' for L^R Generate a Right Linear Grammar G for L^R Generate a Left Linear Grammar G' by rewriting production rules

• For every production X - > xY (where $x \in T^*$) Add a production in $G'(X - > Yx^R)$

Theorem

If L is a regular language, then there exist an equivalent Left Linear Grammar G' such that L=L(G')

Proof: Let L be a regular language $\Rightarrow \exists$ and nfa $M=(Q, \Sigma, \delta, q_0, F)$ such that L=L(M) Construct a new machine M' for L^R Generate a Right Linear Grammar G for L^R Generate a Left Linear Grammar G' by rewriting production rules

- For every production X > xY (where $x \in T^*$) Add a production in $G'(X - > Yx^R)$
- ② For every production X > x (where $x \in T^*$)

Converting Left Linear Grammar to Right Linear Grammar

Theorem

If L is a regular language, then there exist an equivalent Left Linear Grammar G' such that L=L(G')

Proof: Let L be a regular language $\Rightarrow \exists$ and nfa $M=(Q, \Sigma, \delta, q_0, F)$ such that L=L(M) Construct a new machine M' for L^R Generate a Right Linear Grammar G for L^R Generate a Left Linear Grammar G' by rewriting production rules

- For every production X > xY (where $x \in T^*$)

 Add a production in $G'(X > Yx^R)$
- ② For every production X > x (where $x \in T^*$) Add a production in $G'(X - > x^R)$

Converting Left Linear Grammar to Right Linear Grammar

Theorem

If L is a regular language, then there exist an equivalent Left Linear Grammar G' such that L = L(G')

Proof: Let L be a regular language $\rightarrow \exists$ and nfa $M-(Q, \Sigma, \delta, q_0, F)$ such

 $\Rightarrow \exists$ and nfa M= $(Q, \Sigma, \delta, q_0, F)$ such that L=L(M)

Construct a new machine M' for L^R

Generate a Right Linear Grammar G for L^R

Generate a Left Linear Grammar G' by rewriting production rules

- For every production X > xY (where $x \in T^*$) Add a production in $G'(X - > Yx^R)$
- ② For every production X > x (where $x \in T^*$) Add a production in $G'(X - > x^R)$

Correctness: $L=L(M)=L(M')^R=L(G)^R=L(G')$

Converting Left Linear Grammar to Right Linear Grammar

Theorem

If L is a language defined by a Left Linear Grammar G (i.e., L=L(G)), then L is a regular language

Proof: Take it as exercise!

Theorem

If G is a Right Linear Grammar, then there is a Left Linear Grammar G'' such that L(G) = L(G'')

Theorem

If G is a Right Linear Grammar, then there is a Left Linear Grammar G'' such that L(G) = L(G'')

Theorem,

If G is a Right Linear Grammar, then there is a Left Linear Grammar G'' such that L(G) = L(G'')

Proof: Conversion outline (Not a rigorous proof!)

• From G, construct M

Theorem,

If G is a Right Linear Grammar, then there is a Left Linear Grammar G'' such that L(G) = L(G'')

- From G, construct M
- 2 From M construct M' for L^R

Theorem

If G is a Right Linear Grammar, then there is a Left Linear Grammar G'' such that L(G) = L(G'')

- From G, construct M
- 2 From M construct M' for L^R
- **3** Generate G' a Right Linear Grammar for L^R

Theorem

If G is a Right Linear Grammar, then there is a Left Linear Grammar G'' such that L(G) = L(G'')

- From G, construct M
- 2 From M construct M' for L^R
- **3** Generate G' a Right Linear Grammar for L^R
- Generate G'' a Left Linear Grammar for L^{R^R}

Theorem

If G is a Left Linear Grammar, then there is a Right Linear Grammar G'' such that L(G) = L(G'')

Theorem

If G is a Left Linear Grammar, then there is a Right Linear Grammar G'' such that L(G) = L(G'')

Theorem

If G is a Left Linear Grammar, then there is a Right Linear Grammar G'' such that L(G) = L(G'')

Proof: Conversion outline (Not a rigorous proof!)

• From G, generate G' for L^R

Theorem

If G is a Left Linear Grammar, then there is a Right Linear Grammar G'' such that L(G) = L(G'')

- From G, generate G' for L^R
- **2** From G' construct M for L^R

Theorem

If G is a Left Linear Grammar, then there is a Right Linear Grammar G'' such that L(G) = L(G'')

- From G, generate G' for L^R
- **2** From G' construct M for L^R
- **3** Construct M' from M for L^{R^R}

Theorem

If G is a Left Linear Grammar, then there is a Right Linear Grammar G'' such that L(G) = L(G'')

- From G, generate G' for L^R
- **2** From G' construct M for L^R
- **3** Construct M' from M for L^{R^R}
- Generate G'' a Right Linear Grammar for L^{R^R}

Theorem

If G is a Left Linear Grammar, then there is a Right Linear Grammar G'' such that L(G) = L(G'')

- From G, generate G' for L^R
- **2** From G' construct M for L^R
- **3** Construct M' from M for L^{R^R}
- **4** Generate G'' a Right Linear Grammar for L^{R^R}